
ECE 264 Spring 2023
Advanced C Programming

Aravind Machiry
Purdue University

slides from yunglu@purdue.edu

Huffman Compression 01

Build Tree and Compress

yunglu@purdue.edu

Fixed-Length vs Variable-Length Code
• ASCII: fixed-length code, every character needs 8 bits
• Some characters (such as ‘s’ and ‘e’) are more often than some
others (such as ‘q’ and ‘z’). Variable length can be more
efficient:
o fewer bits for frequently used characters
o more bits for rarely used characters
⇒ fewer bits per character on average

• General design principle: optimize for the frequent cases
• This is lossless compression. Data can be fully recovered.

yunglu@purdue.edu

Where is data compression used?
• Everywhere
• Image, video, audio (lossy)
• File download
• When network is limited (in data rate), slow, or unstable

yunglu@purdue.edu

Huffman Coding (Compression)

yunglu@purdue.edu

Lossless compression
1. Count the occurrences of the characters (may include

symbols and unprintable characters)
2. Sort the characters by their occurrences in the ascending

order
3. Take the two least occurrences, make them left and right

children of the same parent node, add the occurrences and
sort in the ascending order again

4. Continue 3 until only one node is left

occurrence 4 18 7 22 10 35

letter # A G c m s

Sort by the occurrences in ascending order

4 7 10 18 22 35

G m A c s

Make the first two siblings of a binary tree

4 7 10 18 22 35

G m A c s

The occurrence of the parent is the sum

11

4 7 10 18 22 35

G m A c s

Insert the parent back in ascending order

10 11 18 22 35

m A c s

G

10 11 18 22 35

m A c s

G

10 11 18 22 35

m A c s

G

10 11 18 22 35

m A c s

G

18 21 22 35

A c s

m

G

18 21 22 35

A c s

m

G

22 35

c s

A
m

G

39

c s

57

A
m

G

39

A
m

G

39

c s

57

96

Only the leaf nodes contain characters

yunglu@purdue.edu

A
m

G

39

c s

57
0 1

character occurrence code length

A 18 0 0 2

m 10 0 1 0 3

4 0 1 1 0 4

G 7 0 1 1 1 4

c 22 1 0 2

s 35 1 1 2

• If occurrence (X) < occurrence (Y)
⇒ code length (X) ≥ code length (Y)

• code length (X) > code length (Y)
⇒ occurrence (X) < occurrence (Y) WRONG

yunglu@purdue.edu

character occurrence code length

A 18 0 0 2

m 10 0 1 0 3

4 0 1 1 0 4

G 7 0 1 1 1 4

c 22 1 0 2

s 35 1 1 2

yunglu@purdue.edu

character occurrence code length

A 18 0 0 2

m 10 0 1 0 3

4 0 1 1 0 4

G 7 0 1 1 1 4

c 22 1 0 2

s 35 1 1 2

input A A c s # m G c s A …
output 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0 …

0

0 0 A

0

0 0 A
yunglu@purdue.edu

input 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0

A
m

G

c s

A

input 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0

A

A

1

1 0 c

1

1 1 s yunglu@purdue.edu

A
m

G

c s

input 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0

A A

c

input 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0

A A c

s

0

0 1

0 1 1

 0 1 1 0 #
yunglu@purdue.edu

A
m

G

c s

input 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0

A A c s

#

yunglu@purdue.edu

input 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0

A A c s #

• 0 goes to the left
• 1 goes to the right
• If reach a leaf node, output the character
• go back to the root

• Characters are stored in only leaf nodes (by construction)

Example
• Hellooo

Example
• Hellooo

• H (1) e (1) l(2) o (3)

Example
• Hellooo

• H (1) e (1) l(2) o (3)

• l(2) o (3)

h e

2

Example
• Hellooo

• H (1) e (1) l(2) o (3)

• l(2) o (3)

• o (3)
h e

2

h e

l

4

Example
• Hellooo

• H (1) e (1) l(2) o (3)

• l(2) o (3)

• o (3)
h e

2

h e

l

4 SHOULD BE IN ASCENDING ORDER

Example
• Hellooo

• H (1) e (1) l(2) o (3)

• l(2) o (3)

• o (3)
h e

2

h e

l

4

h e

l

o

Computing Codes

character occurrence code length

h 1

e 1

l 2

o 3

h e

l

o

Computing Codes

character occurrence code length

h 1 0 0 0 3

e 1 0 0 1 3

l 2 0 1 2

o 3 1 1

h e

l

o

How to build the compression tree
Ch 24 in https://github.com/yunghsianglu/IntermediateCProgramming

typedef struct treenode

{

 struct treenode * left;

 struct treenode * right;

 char value; // character

 int occurrence;

} TreeNode;

typedef struct listnode

{

 struct listnode * next;

 TreeNode * tnptr;

} ListNode;

occurrence 4 18 7 22 10 35

letter # A G c m s

Sort by the occurrences in ascending order

4 7 10 18 22 35

G m A c s

Make the first two siblings of a binary tree

4 7 10 18 22 35

G m A c s

The occurrence of the parent is the sum

11

4 7 10 18 22 35

G m A c s

Insert the parent back in ascending order

10 11 18 22 35

m A c s

G

list node tree node

4, # 7, G 10, m 18, A 22, c 35, s

next

tnptr

4, # 7, G 10, m 18, A 22, c 35, s

11,
left right

10, m 18, A 22, c 35, s

4, # 7, G

11,

10 11 18 22 35

m A c s

G

10 11 18 22 35

m A c s

G

10 11 18 22 35

m A c s

G

18 21 22 35

A c s

m

G

10, m 18, A 22, c 35, s

4, # 7, G

11,

18, A 22, c 35, s
10, m

4, # 7, G

11,

21,

18, A 22, c 35, s

10, m

4, # 7, G

11,

21,

